ПОДГОТОВКА К ЕГЭ 2019

математика

Задание № 4. Теория вероятностей.

40. Перед началом первого тура чемпионата по шахматам участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 26 шахматистов, среди которых 5 спортсменов из России, в том числе Кирилл Черноусов. Найдите вероятность того, что в первом туре Кирилл Черноусов не будет играть с шахматистом из России.

Ответ: 0,84

41. В классе 16 учащихся, среди них два друга — Вадим и Сергей. Учащихся случайным образом разбивают на 4 равные группы. Найдите вероятность того, что Вадим и Сергей окажутся в одной группе.

Ответ: 0,2

42. В классе 21 шестиклассник, среди них два друга — Митя и Петя. Класс случайным образом делят на три группы, по 7 человек в каждой. Найдите вероятность того, что Митя и Петя окажутся в разных группах.

Ответ: 0,7

43. На олимпиаде по русскому языку 350 участников разместили в трёх аудиториях. В первых двух удалось разместить по 140 человек, оставшихся перевели в запасную аудиторию в другом корпусе. Найдите вероятность того, что случайно выбранный участник писал олимпиаду в запасной аудитории.

Ответ: 0,2

44. Научная конференция проводится в 4 дня. Всего запланировано 80 докладов — первые два дня по 12 докладов, остальные распределены поровну между третьим и четвёртым днями. На конференции планируется доклад профессора М. Порядок докладов определяется жеребьёвкой. Какова вероятность, что доклад профессора М. окажется запланированным на последний день конференции?

Ответ: 0,35

45. Конкурс исполнителей проводится в 5 дней. Всего заявлено 80 выступлений — по одному от каждой страны, участвующей в конкурсе. В первый день запланировано 8 выступлений, остальные распределены поровну между оставшимися днями. Порядок выступлений определяется жеребьёвкой. Какова вероятность, что выступление исполнителя из России состоится в третий день конкурса?

Ответ: 0,225

46. Дима, Марат, Петя, Надя и Света бросили жребий — кому начинать игру. Найдите вероятность того, что начинать игру должен будет мальчик.

Ответ: 0,6

47. Вася, Петя, Коля и Лёша бросили жребий — кому начинать игру. Найдите вероятность того, что начинать игру должен будет Петя.

Ответ: 0,25

48. Миша, Олег, Настя и Галя бросили жребий — кому начинать игру. Найдите вероятность того, что начинать игру должна будет не Галя.

Ответ: 0,75

49. Перед началом футбольного матча судья бросает монетку, чтобы определить, какая из команд начнёт игру с мячом. Команда «Биолог» играет три матча с разными командами. Найдите вероятность того, что в этих матчах команда «Биолог» начнёт игру с мячом все три раза.

Ответ: 0,125

50. Перед началом волейбольного матча капитаны команд тянут честный жребий, чтобы определить, какая из команд начнёт игру с мячом. Команда «Статор» по очереди играет с командами «Ротор», «Мотор» и «Стартер». Найдите вероятность того, что «Статор» будет начинать только первую и последнюю игры.

Ответ: 0,125

51. Перед началом футбольного матча судья бросает монетку, чтобы определить, какая из команд начнёт игру с мячом. Команда «Физик» играет три матча с разными командами. Найдите вероятность того, что в этих играх «Физик» выиграет жребий ровно два раза.

Ответ: 0,375

52. Перед началом футбольного матча судья бросает монетку, чтобы определить, какая из команд начнёт игру с мячом. Команда «Сапфир» играет три матча с разными командами. Найдите вероятность того, что в этих матчах команда «Сапфир» начнёт игру с мячом не более одного раза.

Ответ: 0,5

53. В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орёл не выпадет ни разу.

Ответ: 0,25

54. В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орёл выпадет ровно один раз.

Ответ: 0,5

55. В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что решка выпадет все три раза.

Ответ: 0,125

56. В случайном эксперименте симметричную монету бросают четырежды. Найдите вероятность того, что орёл выпадет ровно два раза.

Ответ: 0,375

57. В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что количество выпавших орлов меньше 2.

Ответ: 0,75

58. В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что орлов выпало больше, чем решек.

Ответ: 0,5

59. В случайном эксперименте бросают две игральные кости (кубика). Найдите вероятность того, что в сумме выпадет 7 очков. Результат округлите до сотых.

Ответ: 0,17

60. В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что сумма выпавших очков равна 5 или 6.

Ответ: 0,25

61. В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что произведение выпавших очков делится на 5, но не делится на 30.

Ответ: 0,25

62. В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что разница выпавших очков равна 1 или 2.

Ответ: 0,5

63. В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что произведение выпавших очков — чётное число.

Ответ: 0,75

64. Два игральных кубика бросают одновременно один раз. Найдите вероятность того, что выпадет не дубль (одинаковые очки на двух кубиках). Ответ округлите до сотых.

Ответ: 0,83

65. Игральный кубик бросают 2 раза. С какой вероятностью выпавшие числа будут отличаться на 3? Ответ округлите до сотых.

Ответ: 0,17

66. Игральный кубик бросают 2 раза. С какой вероятностью сумма выпавших очков будет меньше 5? Ответ округлите до сотых.

Ответ: 0,17

67. За круглый стол на 9 стульев в случайном порядке рассаживаются 7 мальчиков и 2 девочки. Найдите вероятность того, что обе девочки будут сидеть рядом.

Ответ: 0,25

68. За круглый стол на 5 стульев в случайном порядке рассаживаются 3 мальчиков и 2 девочки. Найдите вероятность того, что обе девочки не будут сидеть рядом.

Ответ: 0,5

69. В торговом центре два одинаковых автомата продают кофе. Вероятность того, что к концу дня в автомате закончится кофе, равна 0,3. Вероятность того, что кофе закончится в обоих автоматах, равна 0,12. Найдите вероятность того, что к концу дня кофе останется в обоих автоматах.

Ответ: 0,52

70. В Волшебной стране бывает два типа погоды: хорошая и отличная, причём погода, установившись утром, держится неизменной весь день. Известно, что с вероятностью 0,8 погода завтра будет такой же, как и сегодня. Сегодня 3 июля, погода в Волшебной стране хорошая. Найдите вероятность того, что 5 июля в Волшебной стране будет хорошая погода.

Ответ: 0,68

71. На рок-фестивале выступают группы — по одной от каждой из заявленных стран. Порядок выступления определяется жребием. Какова вероятность того, что группа из Дании будет выступать после группы из Швеции и после группы из Норвегии? Результат округлите до сотых.

Ответ: 0,33

72. Автоматическая линия изготавливает батарейки. Вероятность того, что готовая батарейка неисправна, равна 0,02. Перед упаковкой каждая батарейка проходит систему контроля. Вероятность того, что система забракует неисправную батарейку, равна 0,99. Вероятность того, что система по ошибке забракует исправную батарейку, равна 0,01. Найдите вероятность того, что случайно выбранная изготовленная батарейка будет забракована системой контроля.

Ответ: 0,0296

73. Две фабрики выпускают одинаковые стёкла для автомобильных фар. Первая фабрика выпускает 45% этих стёкол, вторая –– 55%. Первая фабрика выпускает 3% бракованных стёкол, а вторая –– 1%. Найдите вероятность того, что случайно купленное в магазине стекло окажется бракованным.

Ответ: 0,019

74. Ковбой Джон попадает в муху на стене с вероятностью 0,9, если стреляет из пристрелянного револьвера. Если Джон стреляет из не пристрелянного револьвера, то он попадает в муху с вероятностью 0,2. На столе лежит 10 револьверов, из них только 4 пристрелянные. Ковбой Джон видит на стене муху, наудачу хватает первый попавшийся револьвер и стреляет в муху. Найдите вероятность того, что Джон промахнётся.

Ответ: 0,52

75. Всем пациентам с подозрением на гепатит делают анализ крови. Если анализ выявляет гепатит, то результат анализа называется положительным. У больных гепатитом пациентов анализ даёт положительный результат с вероятностью 0,9. Если пациент не болен гепатитом, то анализ может дать ложный положительный результат с вероятностью 0,01. Известно, что 5% пациентов, поступающих с подозрением на гепатит, действительно больны гепатитом. Найдите вероятность того, что результат анализа у пациента, поступившего в клинику с подозрением на гепатит, будет положительным.

Ответ: 0,0545

76. При артиллерийской стрельбе автоматическая система делает выстрел по цели. Если цель не уничтожена, то система делает повторный выстрел. Выстрелы повторяются до тех пор, пока цель не будет уничтожена. Вероятность уничтожения некоторой цели при первом выстреле равна 0,4, а при каждом последующем — 0,6. Сколько выстрелов потребуется для того, чтобы вероятность уничтожения цели была не менее 0,8?

Ответ: 3

77. Чтобы поступить в институт на специальность «Лингвистика», абитуриент должен набрать на ЕГЭ не менее 70 баллов по каждому из трёх предметов — математика, русский язык и иностранный язык. Чтобы поступить на специальность «Коммерция», нужно набрать не менее 70 баллов по каждому из трёх предметов — математика, русский язык и обществознание. Вероятность того, что абитуриент З. получит не менее 70 баллов по математике, равна 0,6, по русскому языку — 0,8, по иностранному языку — 0,7 и по обществознанию — 0,5. Найдите вероятность того, что З. сможет поступить хотя бы на одну из двух упомянутых специальностей.

Ответ: 0,408

78. На фабрике керамической посуды 10% произведённых тарелок имеют дефект. При контроле качества продукции выявляется 80% дефектных тарелок. Остальные тарелки поступают в продажу. Найдите вероятность того, что случайно выбранная при покупке тарелка не имеет дефектов. Ответ округлите до сотых.

Ответ: 0,98

79. Агрофирма закупает куриные яйца в двух домашних хозяйствах. 40% яиц из первого хозяйства — яйца высшей категории, а из второго хозяйства — 20% яиц высшей категории. Всего высшую категорию получает 35% яиц. Найдите вероятность того, что яйцо, купленное у этой агрофирмы, окажется из первого хозяйства.

Ответ:0,75

   2

Главная


Репетитор по математике

Подготовка к ЕГЭ: Авторская методика, которая значительно эффективнее школьных методов обучения. Оптимальные алгоритмы, ускоряющие освоение и решение задач. Приемы, облегчающие запоминание формул и другие навыки, упрощающие процесс подготовки к экзамену. Качественная подготовка задач части «С», позволяющая добиться высоких результатов. Регулярное пробное тестирование.

Подготовка 7-10 классы: Устранение пробелов в школьной программе. Подготовка к ОГЭ.

Высшая математика: Подготовка к тестам, контрольным работам, экзаменам, зачетам.

Занятия проводятся очно либо дистанционно (Skype). Начальный уровень не важен.


Записаться на занятия тел.: +7(952)-882-36-05; e-mail: egemath2019@mail.ru.

Если есть вопросы, пишите через форму для сообщений.