2. Стереометрия
3. Начала теории вероятностей
5. Простейшие уравнения
6. Преобразование выражений
7. Производная функции
8. Практические задачи
9. Текствые задачи
10. Графики функций
11. Исследование функций
12. Уравнения
13. Стереометрия с доказ-вом
14. Неравенства
15. Финансовая математика
16. Планиметрия с доказ-вом
17. Задачи с параметром
18. Задачи на логику
БАЗА ЗАДАНИЙ
Задание № 2. Стереометрия.
1. Через среднюю линию основания треугольной призмы проведена плоскость, параллельная боковому ребру. Площадь боковой поверхности отсеченной треугольной призмы равна 8. Найдите площадь боковой поверхности исходной призмы.
Ответ: 16
2. Через среднюю линию основания треугольной призмы, объем которой равен 32, проведена плоскость, параллельная боковому ребру. Найдите объем отсеченной треугольной призмы.
Ответ: 8
3. Во сколько раз увеличится площадь поверхности куба, если его ребро увеличить в три раза?
Ответ: 9
4. Площадь поверхности куба равна 24. Найдите его объем.
Ответ: 8
5. Если каждое ребро куба увеличить на 1, то его площадь поверхности увеличится на 30. Найдите ребро куба.
Ответ: 2
6. Площадь поверхности куба равна 8. Найдите его диагональ.
Ответ: 2
7. Объем куба равен 24√3. Найдите его диагональ.
Ответ: 6
8. Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 3 и 5. Объем призмы равен 30. Найдите ее боковое ребро.
Ответ: 4
9. Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 3 и 4. Площадь ее поверхности равна 132. Найдите высоту призмы.
Ответ: 10
10. Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 6 и 8, боковое ребро равно 5. Найдите объем призмы.
Ответ: 120
11. Найдите боковое ребро правильной четырехугольной призмы, если сторона ее основания равна 20, а площадь поверхности равна 1760.
Ответ: 12
12. Найдите площадь поверхности прямой призмы, в основании которой лежит ромб с диагоналями, равными 6 и 8, и боковым ребром, равным 10.
Ответ: 248
13. В основании прямой призмы лежит ромб с диагоналями, равными 9 и 12. Площадь ее поверхности равна 468. Найдите боковое ребро этой призмы.
Ответ: 12
14. Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 1, 2. Объем параллелепипеда равен 6. Найдите площадь его поверхности.
Ответ: 22
15. Три ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 4, 6, 9. Найдите ребро равновеликого ему куба.
Ответ: 6
16. Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 2, 3. Объем параллелепипеда равен 36. Найдите его диагональ.
Ответ: 7
17. Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 2, 4. Диагональ параллелепипеда равна 6. Найдите объем параллелепипеда.
Ответ:32
18. Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 1, 2. Площадь поверхности параллелепипеда равна 16. Найдите его диагональ.
Ответ: 3
19. Диагональ прямоугольного параллелепипеда равна √8 и образует углы 30°,30° и 45° с плоскостями граней параллелепипеда. Найдите объем параллелепипеда.
Ответ: 4
20. В прямоугольном параллелепипеде ABCDA1B1C1D1 известно, что BB1=32, AB=12, AD=9. Найдите площадь сечения проходящее через вершины A, A1, C.
Ответ: 480
21. В прямоугольном параллелепипеде ABCDA1B1C1D1 известно, что BB1=16, А1B1=2, A1D1=8. Найдите длину диагонали AC1.
Ответ: 18
22. Дана правильная четырёхугольная призма ABCDA1B1C1D1, площадь основания которой равна 6, а боковое ребро равно 7. Найдите объём многогранника, вершинами которого являются точки A, B, C, B1.
Ответ: 7
23. Найдите объём многогранника, вершинами которого являются точки C, A1, B1 , C1 правильной треугольной призмы ABCA1B1C1 , площадь основания которой равна 4, а боковое ребро равно 9.
Ответ: 12
24. Найдите объём многогранника, вершинами которого являются точки A, C, A1, B1, C1 правильной треугольной призмы ABCA1B1C1. Площадь основания призмы равна 7, а боковое ребро равно 9.
Ответ: 42
25. В правильной треугольной призме ABCA1B1C1 все ребра равны 3. Найдите угол между прямыми AA1и BC1. Ответ дайте в градусах.
Ответ: 45°
26. В правильной треугольной призме ABCA1B1C1 известно, что AB=√3AA1. Найдите угол между прямыми AB1 и CC1. Ответ дайте в градусах.
Ответ: 60°
27. Объём куба равен 16. Найдите объём треугольной призмы, отсекаемой от куба плоскостью, проходящей через середины двух рёбер, выходящих из одной вершины, и параллельной третьему ребру, выходящему из этой же вершины.
Ответ: 2
28. Объем куба равен 12. Найдите объем четырехугольной пирамиды, основанием которой является грань куба, а вершиной — центр куба.
Ответ: 2
29. Объем параллелепипеда ABCDA1B1C1D1 равен 4,5. Найдите объем треугольной пирамиды AD1CB1.
Ответ: 1,5
30. Объем параллелепипеда ABCDA1B1C1D1 равен 1,5. Найдите объем треугольной пирамиды ABCB1.
Ответ: 0,25
31. Найдите объем параллелепипеда ABCDA1B1C1D1, если объем треугольной пирамиды ABDA1 равен 3.
Ответ: 18
32. Гранью параллелепипеда является ромб со стороной 1 и острым углом 60°. Одно из ребер параллелепипеда составляет с этой гранью угол 60° и равно 2. Найдите объем параллелепипеда.
Ответ: 1,5
33. Найдите объём многогранника ACDFA1C1D1F1 правильной шестиугольной призмы ABCDEFA1B1C1D1E1F1, площадь основания которой равна 9, а боковое ребро равно 11.
Ответ: 66
34. В правильной шестиугольной призме ABCDEFA1B1C1D1E1F1, стороны основания которой равны 5, а боковые рёбра равны 11, найдите расстояние от точки A до прямой E1D1.
Ответ: 14
35. Найдите объём многогранника DA1B1C1D1E1F1 правильной шестиугольной призмы ABCDEFA1B1C1D1E1F1, площадь основания которой равна 12, а боковое ребро равно 2.
Ответ: 8
36. Найдите объём многогранника CDEC1D1E1 правильной шестиугольной призмы ABCDEFA1B1C1D1E1F1, площадь основания которой равна 6, а боковое ребро равно 14.
Ответ:14
37. Найдите объём многогранника A1B1F1A правильной шестиугольной призмы ABCDEFA1B1C1D1E1F1, площадь основания которой равна 12, а боковое ребро равно 15.
Ответ: 10
38. В правильной четырёхугольной пирамиде высота равна 2, боковое ребро равно 5. Найдите её объём.
Ответ: 28
39. В правильной четырёхугольной пирамиде боковое ребро равно 7,5, а сторона основания равна 10. Найдите высоту пирамиды.
Ответ: 2,5
40. Найдите площадь поверхности правильной четырехугольной пирамиды, стороны основания которой равны 6 и высота равна 4.
Ответ: 96
41. В правильной четырехугольной пирамиде высота равна 12, объем равен 200. Найдите боковое ребро этой пирамиды.
Ответ: 13
42. В правильной треугольной пирамиде боковое ребро равно 7, а сторона основания равна 10,5. Найдите высоту пирамиды.
Ответ: 3,5